Slope Formula:
| From: | To: |
Slope is a measure of the steepness or incline of a line, representing the rate of change between two variables. It describes how much the y-value changes for each unit change in the x-value.
The calculator uses the slope formula:
Where:
Explanation: The formula calculates the ratio of vertical change (rise) to horizontal change (run) between two distinct points on a line.
Details: Slope is fundamental in mathematics, physics, engineering, and economics. It helps determine line equations, analyze trends, calculate gradients, and understand rates of change in various applications.
Tips: Enter the coordinates of two distinct points (x1,y1) and (x2,y2). Ensure x2 ≠ x1 to avoid division by zero. The calculator will compute the slope and indicate if it's undefined for vertical lines.
Q1: What does a positive slope indicate?
A: A positive slope indicates that the line rises from left to right, showing a positive relationship between x and y variables.
Q2: What does a negative slope indicate?
A: A negative slope indicates that the line falls from left to right, showing an inverse relationship between x and y variables.
Q3: When is slope undefined?
A: Slope is undefined when x2 = x1, which represents a vertical line where there's no horizontal change.
Q4: What is a zero slope?
A: A zero slope occurs when y2 = y1, representing a horizontal line where there's no vertical change.
Q5: Can slope be used for non-linear functions?
A: For non-linear functions, slope represents the instantaneous rate of change at a specific point, calculated using derivatives rather than this simple formula.